HIMPUNAN BAGIAN ATAU SUBSET


Himpunan Bagian (Subset)

·         Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B.
·         Dalam hal ini, B dikatakan superset dari A.
·         Notasi: A  Í B

·         Diagram Venn:
                                               


Contoh 8.
(i)  { 1, 2, 3} Í {1, 2, 3, 4, 5}
(ii) {1, 2, 3} Í {1, 2, 3}      
(iii) N Z R C
(iv) Jika A = { (x, y) | x + y < 4, x  ³, y  ³ 0 } dan
       B = { (x, y) | 2x + y < 4,  x  ³ 0 dan y  ³ 0 },  maka B A.                







                                                                                                                         

TEOREMA 1. Untuk sembarang himpunan A berlaku hal-hal sebagai berikut:
(a) A adalah himpunan bagian dari A itu sendiri (yaitu, A A).
(b) Himpunan kosong merupakan himpunan bagian dari A ( A).
(c) Jika A Í B dan B Í C, maka A Í C
                  
·     A dan A A, maka dan A disebut himpunan bagian tak sebenarnya (improper subset) dari himpunan A.
Contoh: A = {1, 2, 3}, maka {1, 2, 3} dan Æ adalah improper subset dari A.

·     A Í B berbeda dengan A Ì B
(i)         A Ì B : A adalah himpunan bagian dari B tetapi A ¹ B.
       A adalah himpunan bagian sebenarnya (proper subset) dari B.

 Contoh: {1} dan {2, 3} adalah  proper subset dari {1, 2, 3}

(ii) A Í B : digunakan untuk menyatakan bahwa A adalah  himpunan bagian (subset) dari B yang memungkinkan A = B.


Himpunan yang Sama

·         A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.
·         A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka A ¹ B.

·         Notasi : A = B  «  A Í B dan B Í A


Contoh 9.
(i)   Jika A = { 0, 1 } dan B = { x | x (x – 1) = 0 }, maka A = B
(ii)  Jika A = { 3, 5, 8, 5 } dan B = {5, 3, 8 }, maka A = B
(iii) Jika A = { 3, 5, 8, 5 } dan B = {3, 8}, maka A ¹ B                                             
Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut:
(a) A = A, B = B, dan C = C    
(b) jika A = B, maka B = A
(c) jika A = B dan B = C, maka A = C

 


Himpunan yang Ekivalen


·          Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama.

·         Notasi : A ~ B  « ½A½ = ½B½


Contoh 10.
Misalkan A = { 1, 3, 5, 7 } dan B = { a, b, c, d }, maka A ~ B sebab ½A½ = ½B½ = 4                  

 


Himpunan Saling Lepas

·         Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki elemen yang sama.

·         Notasi : A // B

·         Diagram Venn:

Contoh 11.
Jika A = { x | x P, x < 8 } dan B = { 10, 20, 30, ... }, maka A // B.                     

Himpunan Kuasa


·         Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri.                         

·         Notasi : P(A) atau 2A

·         Jika ½A½ = m, maka ½P(A)½ = 2m.

Contoh 12.
Jika A = { 1, 2 }, maka P(A) = { , { 1 }, { 2 }, { 1, 2 }}                                        
Contoh 13.
Himpunan kuasa dari himpunan kosong adalah P(Æ) = {Æ}, dan himpunan kuasa dari himpunan {Æ} adalah P({Æ}) = {Æ, {Æ}}.   

Komentar

Postingan populer dari blog ini

LAPORAN PRAKTIKUM KIMIA UJI NYALA API UNSUR ALKALI DAN ALKALI TANAH

LAPORAN PRAKTIKUM KIMIA ELEKTROLISIS LARUTAN KI

LAPORAN PRAKTIKUM BIOLOGI UJI MAKANAN