CARA PENYAJIAN HIMPUNAN


Cara Penyajian Himpunan


1. Enumerasi


Contoh 1.
-  Himpunan empat bilangan asli pertama: A = {1, 2, 3, 4}.      
-  Himpunan lima bilangan genap positif pertama: B = {4, 6, 8, 10}.            
-  C = {kucing, a, Amir, 10, paku}
-  R  = { a, b, {a, b, c}, {a, c} }
-  C  = {a, {a}, {{a}} }
-  K  = { {} }                                                                                              
-  Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }   
-  Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}.                                                                                 
Keanggotaan
x Î A : x merupakan anggota himpunan A;
x Ï A : x bukan merupakan anggota himpunan A.


Contoh 2.
Misalkan: A = {1, 2, 3, 4},  R  = { a, b, {a, b, c}, {a, c} }
       K  = {{}}
maka
3    A
5    B
{a, b, c} Î R
         c Ï R         
              {} Î K
              {} Ï R                                                                                               
Contoh 3. Bila P1 = {a, b}, P2 = { {a, b} }, P3 = {{{a, b}}}, maka
              a Î P1
          a Ï P2
                   P1 Î P2
          P1 Ï P3
                   P2 Î P3                                                                                              


2. Simbol-simbol Baku

P =  himpunan bilangan bulat positif  =  { 1, 2, 3, ... }
N =  himpunan bilangan alami (natural)  =  { 1, 2, ... }
Z =  himpunan bilangan bulat  =  { ..., -2, -1, 0, 1, 2, ... }
Q =  himpunan bilangan rasional
R =  himpunan bilangan riil
C =  himpunan bilangan kompleks


·       Himpunan yang universal: semesta, disimbolkan dengan U.
Contoh: Misalkan U = {1, 2, 3, 4, 5} dan A adalah himpunan bagian dari U, dengan A = {1, 3, 5}.


3.  Notasi Pembentuk Himpunan

Notasi: { x ú syarat yang harus dipenuhi oleh x }   


Contoh 4.
(i)  A adalah himpunan bilangan bulat positif yang kecil dari 5
       A = { x | x  adalah bilangan bulat positif lebih kecil dari  5}
 atau
 A  =  { x | x  P, x < 5 } 
     yang ekivalen dengan A = {1, 2, 3, 4}

(ii)  M = { x | x adalah mahasiswa yang mengambil kuliah IF2151}            


4. Diagram Venn

Contoh 5.
Misalkan U = {1, 2, …, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}.
Diagram Venn:




Kardinalitas

·         Jumlah elemen di dalam A disebut kardinal dari himpunan A.
·         Notasi: n(A) atau êA ê

Contoh 6.
(i)   B = { x | x merupakan bilangan prima yang lebih kecil dari 20 },
          atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka ½B½ = 8
(ii)  T = {kucing, a, Amir, 10, paku}, maka ½T½ = 5
(iii)  A = {a, {a}, {{a}} }, maka ½A½ = 3                                                                                                                                             

 

Himpunan Kosong

·         Himpunan dengan kardinal = 0 disebut himpunan kosong (null set).
·         Notasi : Æ atau {}


Contoh 7.
(i)   E = { x | x < x }, maka n(E) = 0
(ii)  P = { orang Indonesia yang pernah ke bulan }, maka n(P) = 0
(iii) A = {x | x adalah akar persamaan kuadrat x2 + 1 = 0 }, n(A) = 0           

·         himpunan {{ }} dapat juga ditulis sebagai {Æ}
·         himpunan {{ }, {{ }}} dapat juga ditulis sebagai {Æ, {Æ}}
{Æ} bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong.

Komentar

Postingan populer dari blog ini

LAPORAN PRAKTIKUM KIMIA UJI NYALA API UNSUR ALKALI DAN ALKALI TANAH

LAPORAN PRAKTIKUM KIMIA ELEKTROLISIS LARUTAN KI

LAPORAN PRAKTIKUM BIOLOGI UJI MAKANAN