OPERASI TERHADAP HIMPUNAN


Operasi Terhadap Himpunan

a. Irisan (intersection)


·       Notasi : A Ç B = { x | x Î A dan x Î B }





Contoh 14.
(i)     Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18},
  maka A Ç B = {4, 10}
(ii) Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A B = .
 Artinya:  A // B                           

b.  Gabungan (union)


·       Notasi : A È B = { x | x Î A atau x Î B }



   


Contoh 15.
(i)  Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A B = { 2, 5, 7, 8, 22 }
(ii) A = A                                                                                          

 

 

c.  Komplemen (complement)


·       Notasi :  = { x | x Î U, x Ï A }






Contoh 16.
Misalkan U = { 1, 2, 3, ..., 9 },
(i)              jika A = {1, 3, 7, 9}, maka  = {2, 4, 6, 8}
(ii)           jika A = { x | x/2 P, x < 9 }, maka = { 1, 3, 5, 7, 9 }                            

Contoh 17.  Misalkan:
A = himpunan semua mobil buatan dalam negeri
B = himpunan semua mobil impor
C = himpunan semua mobil yang dibuat sebelum tahun 1990
D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta
E = himpunan semua mobil milik mahasiswa universitas tertentu

(i)    “mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri” à (E Ç A) È (E Ç B) atau E Ç (A È B)

(ii) “semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta” à A Ç C Ç D

(iii)        “semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta” à                                      


d. Selisih (difference)


·       Notasi : AB = { x | x Î A dan x Ï B } =  A Ç






Contoh 18.  
(i)   Jika A = { 1, 2, 3, ..., 10 } dan B = { 2, 4, 6, 8, 10 }, maka AB = { 1, 3, 5, 7, 9 } dan BA =
(ii)  {1, 3, 5} – {1, 2, 3} = {5}, tetapi {1, 2, 3} – {1, 3, 5} = {2}
 

e.  Beda Setangkup (Symmetric Difference)


·       Notasi: A Å B = (A È B) – (A Ç B) = (AB) È (BA)


Contoh 19.
Jika A = { 2, 4, 6 } dan B = { 2, 3, 5 }, maka A B = { 3, 4, 5, 6 }
 


Contoh 20.  Misalkan
U = himpunan mahasiswa
P = himpunan mahasiswa yang nilai ujian UTS di atas 80
Q = himpunan mahasiswa yang nilain ujian UAS di atas 80
Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.
(i)     “Semua mahasiswa yang mendapat nilai A” : P Ç Q
(ii)  “Semua mahasiswa yang mendapat nilai B” : P Å Q
(iii)   “Ssemua mahasiswa yang mendapat nilai C” : U – (P È Q)              

 

TEOREMA 2.  Beda setangkup memenuhi sifat-sifat berikut:

          (a) A Å B = B Å A                                  (hukum komutatif)
          (b) (A Å B )  Å C = A Å (B Å C )          (hukum asosiatif)











         

f.  Perkalian Kartesian (cartesian product)


·       Notasi: A ´ B = {(a, b) ½ a Î A dan b Î B }


Contoh 20.
(i)   Misalkan C = { 1, 2, 3 },  dan D = { a, b }, maka
      C
´ D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }
(ii)  Misalkan A = B = himpunan semua bilangan riil, maka
 A
´ B = himpunan semua titik di bidang datar

Catatan:
1.    Jika A dan B merupakan himpunan berhingga, maka: ½A ´ B½ = ½A½ . ½B½.
2.    Pasangan berurutan (a, b) berbeda dengan (b, a), dengan kata lain (a, b) ¹ (b, a).
3.    Perkalian kartesian tidak komutatif, yaitu A ´ B ¹ B ´ A  dengan syarat A atau B tidak kosong.
Pada Contoh 20(i) di atas, D ´ C = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) } ¹ C ´ D.
4.    Jika A = Æ atau B = Æ, maka A ´ B = B ´ A =  Æ

 

Contoh 21.  Misalkan

A = himpunan makanan = { s = soto, g = gado-gado, n = nasi goreng, m = mie rebus }

         B = himpunan minuman = { c = coca-cola, t = teh, d = es dawet }
Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas?
Jawab:
½A ´ B½ = ½A½×½B½ = 4 × 3 = 12 kombinasi dan minuman, yaitu {(s, c), (s, t), (s, d), (g, c), (g, t), (g, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)}.                                                                    
Contoh 21. Daftarkan semua anggota himpunan berikut:
(a) P(Æ)         (b) Æ ´ P(Æ)      (c) {Æ}´ P(Æ)   (d) P(P({3}))     
Penyelesaian:
(a)P(Æ) = {Æ}
(b)    Æ ´ P(Æ) = Æ   (ket: jika A = Æ atau B = Æ maka A ´ B = Æ)
(c){Æ}´ P(Æ) = {Æ}´ {Æ} = {(Æ,Æ))
(d)   P(P({3})) = P({ Æ,  {3} }) = {Æ, {Æ}, {{3}}, {Æ, {3}} }                                                          

Komentar

Postingan populer dari blog ini

LAPORAN PRAKTIKUM KIMIA UJI NYALA API UNSUR ALKALI DAN ALKALI TANAH

LAPORAN PRAKTIKUM KIMIA ELEKTROLISIS LARUTAN KI

LAPORAN PRAKTIKUM BIOLOGI RESPIRASI ANAEROB ATAU FERMENTASI